Sub. Code 558201

M.Sc. DEGREE EXAMINATION, APRIL - 2024

Second Semester

Nutrition and Dietetics

NUTRITIONAL BIOCHEMISTRY

(CBCS - 2023 onwards)

		(CDCD	2020	on warus)
Tim	e : 3 F	Hours		Maximum : 75 Marks
		Pa	rt A	$(10 \times 1 = 10)$
An	swer			e type questions by choosing option.
1.		——— is a dis	accha	aride of glucose and fructose. (CO1, K1)
	(a)	Sucrose	(b)	Lactose
	(c)	Maltose	(d)	Trehalose
2.		_		configuration with respect to oses and second carbon atom (CO1, K1)
	(a)	Isomerism	(b)	Annomerism
	(c)	Stereoisomerism	(d)	Diastereoisomerism
3.		are est	cers	of fatty acids and glycerol. (CO2, K1)
	(a)	Fats	(b)	Waxes
	(c)	Glycolipids	(d)	Lipoproteins

4.		is a cofa	ctor i	n transamination	. (CO2, K1)
	(a)	Pyridoxal-5-Phosp	phate		
	(b)	Pyridoine-5-Phosp	phate		
	(c)	Pyridoxine-6-Phos	sphat	e	
	(d)	Pyrimidine-5-Pho	sphat	ce	
5.		ciency of vitamingulation time.	ı —	incr	eases blood (CO3, K1)
	(a)	A	(b)	D	
	(c)	E	(d)	K	
6.	Нур	ogeusia appear	in		deficiency. (CO3, K2)
	(a)	Iron	(b)	Selenium	
	(c)	Zinc	(d)	Fluorine	
7.	Pur	ine base found in R	NA is	 .	(CO4, K2)
	(a)	Guanine	(b)	Cytosine	
	(c)	Thymine	(d)	Uracil	
8.	FM		to p	oroduce coenzyme	es FAD and (CO4, K1)
	(a)	Thiamine	(b)	Riboflavin	
	(c)	Niacin	(d)	Biotin	
9.		is the o	chief	cation of extrace	ellular fluid. (CO5, K1)
	(a)	Sodium	(b)	Potassium	
	(c)	Phosphorus	(d)	Magnesium	
10.	_	nt or flight respon mone.	se is	triggered by —	(CO5, K1)
	(a)	Parathormone	(b)	Adrenaline	
	(c)	Insulin	(d)	Glucagon	
			2		R1094

Part B $(5 \times 5 = 25)$

Answer all questions not more than 500 words each.

11. (a) Summarize the inborn errors of carbohydrate metabolism. (CO1, K2)

Or

(b) Explain gluconeogenesis. (CO1, K2)

12. (a) Classify proteins. (CO2, K2)

Or

- (b) Interpret the nutritional aspects of lipids. (CO2, K2)
- 13. (a) Simplify the effects of calcium deficiency. (CO3, K3)

Or

- (b) Examine the role of B vitamins in metabolism. (CO3, K3)
- 14. (a) Summarize the genetic disorders of nucleic acids in humans. (CO4, K3)

Or

- (b) Classify enzymes and discuss mechanism of enzyme action. (CO4, K3)
- 15. (a) Explain acid base balance. (CO5, K4)

Or

(b) Assess the diseases of electrolyte imbalance. (CO5, K4)

R1094

Part C

 $(5 \times 8 = 40)$

Answer all questions not more than 1000 words each.

16. (a) Illustrate the steps in glycolytic pathway with ATP generation. (CO1, K3)

Or

- (b) Illustrate the steps in TCA cycle with ATP generation. (CO1, K3)
- 17. (a) Interpret the steps in protein synthesis. (CO2, K3)

Or

- (b) Explain in detail the process of β -oxidation. (CO2, K3)
- 18. (a) Examine the impact of Vitamin A deficiency and excess in humans. (CO3, K4)

Or

- (b) Examine the impact of iron deficiency and excess in humans. (CO3, K4)
- 19. (a) Summarize the steps in nucleic acid metabolism. (CO4, K4)

Or

- (b) Outline the structure and functions of DNA. (CO4, K4)
- 20. (a) Determine the role of hormones in bodily functions. (CO5, K5)

Or

(b) Interpret the role of nutrients in maintenance of water and electrolyte balance. (CO5, K5)

R1094

Sub. Code 558202

M.Sc. DEGREE EXAMINATION, APRIL - 2024

Second Semester

Nutrition and Dietetics

COMMUNITY NUTRITION

(CBCS - 2023 onwards)

		•		•	
Tim	e:3 F	Hours		Maxi	mum : 75 Marks
		Pa	art A		$(10 \times 1 = 10)$
An	swer	all the following o	bjectiv	e type questi	ons by choosing
				option.	· ·
1.		is an indi	rect m	ethod of asse	ssing nutritional
	stat				(CO1, K1)
	(a)	Anthropometry			
	(b)	Vital health stat	istics		
	(c)	Clinical examina	tion		
	(d)	Lab estimation			
2.	Serv	um transferrin le :	vel h	elps to asses	ss the status of (CO1, K1)
	(a)	Iron	(b)	Iodine	
	(c)	Vitamin D	(d)	Vitamin E	
3.		is absent	in Ma	rasmus.	(CO2, K1)
	(a)	Dehydration	(b)	Irritability	
	(c)	Apathy	(d)	Oedema	
4.		manifest	s as	dry patches	of non-wettable
	conj	unctiva.			(CO2, K1)
	(a)	Conjunctival xer	osis		
	(b)	Bitot spots			
	(c)	Keratomalacia			
	(d)	Corneal xerosis			

 Indi	was laura. for the poores		•	Government of are hunger free
Indi	a.			(CO3, K1)
(a)	Mid Day Meal			
(b)	Special Nutrition	on Progr	ramme	
(c)	Annapurna			
(d)	Antodaya Anna	ı Yojana	L	
Kisł	nori Shakti Yojan	a Scher	ne covers	
				(CO3, K1)
(a)	Preschoolers	` '	Adolescent G	firls
(c)	Adult women	(d)	Elderly	
UNI	CEF stands for _			(CO4, K1)
(a)	United Nations Fund	s Intern	ational Child	ren Emergency
(b)	United Nations Fund	s Interi	national Chile	dren Education
(c)	United Nations	Interna	ational Child I	Emergency Fee
(d)	United Nations	Inter C	hildren Emer	gency Fund
The	objective of WHO) is	•	(CO4, K2)
(a)	Let there be bro	ead		
(b)	The attainment	t of high	est level of he	alth by all
(c)	Let there be foo	od		
(d)	The attainment	t of high	est level of ed	ucation by all
	revolutio	on aims	to achieve sel	f-reliance in the
prod	luction of oil seed	ls		(CO5, K2)
(a)	Yellow	(b)	Blue	
(c)	Green	(d)	White	
edu	is an cation.	indivi	dual method	of nutrition (CO5, K1)
(a)	Symposium	(b)	Workshop	
(c)	Home visit	(d)	Role play	
		2		R1095

Part B $(5 \times 5 = 25)$

Answer all questions not more than 500 words each.

11. (a) Predict the nutritional problems in the community. (CO1, K3)

Or

- (b) Identify and explain the role of clinical signs in examining the nutritional status. (CO1, K3)
- 12. (a) Explain the symptoms of PEM. (CO2, K2)

Or

- (b) Interpret the strategies to overcome malnutrition. (CO2, K2)
- 13. (a) Simplify the role of environmental sanitation in nutrition intervention. (CO3, K3)

Or

- (b) Examine the need for nutrition intervention programmes. (CO3, K3)
- 14. (a) Summarize the role of FAO. (CO4, K3)

Or

- (b) Summarize the importance of nutrition education to the community. (CO4, K3)
- 15. (a) Compile how to evaluate nutrition education programmes. (CO5, K4)

Or

(b) Discuss the phases of white revolution. (CO5, K4)

R1095

Part C

 $(5 \times 8 = 40)$

Answer all questions not more than 1000 words each.

16. (a) Identify the anthropometric methods used to assess the nutritional status of the community. (CO1, K5)

Or

- (b) Discover the significance of indirect assessment methods in assessment of nutritional status.(CO1, K5)
- 17. (a) Explain Vitamin A deficiency and preventive measures for Vitamin A deficiency. (CO2, K4)

Or

- (b) Explain anaemia in detail. (CO2, K4)
- 18. (a) Examine the progran1mes organized by governmental agencies for the vulnerable sections of the population. (CO3, K4)

Or

- (b) Examine the programmes organized by nongovernmental agencies for the vulnerable sections of the population. (CO3, K4)
- 19. (a) Explain the national organizations concerned with food and nutrition. (CO4, K4)

Or

- (b) Outline the nature of nutrition education. (CO4, K4)
- 20. (a) Elaborate the principles of planning nutrition education programme. (CO5, K5)

Or

(b) Discuss the function and outcome of green revolution and blue revolution in detail. (CO5, K5)

R1095

Sub. Code **558203**

M.Sc. DEGREE EXAMINATION, APRIL - 2024

Second Semester

Nutrition and Dietetics

		SPOR	RTS NU'	IRITION	
		(CBCS	S - 2023	onwards)	
Time	e : 3 F	Hours		Maximu	m : 75 Marks
			Part A		$(10 \times 1 = 10)$
	Ar		_	ojective type que orrect option.	stions
1.		abolically ———of oxygen.	w	ork is performed	d without the (CO1, K3)
	(a)	Aerobic	(b)	Anaerobic	
	(c)	Endurance	(d)	Both (b) and (c))
2.	The	term hypertrop	hy mean	s ———.	(CO1, K3)
	(a)	Increase in the	e size		
	(b)	Decrease in th	e size		
	(c)	Normal in size	;		

(d) Abnormal in size

		amounts of	f fat a	nd muscle.	(CO2, K2)
	(a)	Small	(b)	Large	
	(c)	Not a bit	(d)	Very high	
4.	Body	y physique refers to	the -	of bo	dy. (CO2, K2)
	(a)	Shape	(b)	Fitness	
	(c)	Performance	(d)	Movements	
5.	The	trained muscle	s bı	ırn ———	– fat and (CO3, K2)
	(a)	More and More	(b)	Less and Less	
	(c)	Less and More	(d)	More and Less	
6.		three necessary am		cids ————	are found in (CO3, K2)
	(a)	Leucine, Isoleucin	ıe, Va	line	
	(b)	Alanine, Histidine	e, Thr	reonine	
	(c)	Lysine, Proline, S	erine		
	(d)	Glutamine, Methi	onine	e, Phenylalanine	
			2		R1096

Ectomorphs are described as having a slight build with

3.

7.		in surface			
	remo	oves slightly less tr	ian —	———— kcal of h	eat. (CO4, K2)
	(a)	0.2	(b)	0.6	
	(c)	1.2	(d)	1.6	
8.		-		forty five minute	
		G			(CO4, K2)
	(a)	Energy	(b)	Growth	
	(c)	Anabolic	(d)	Transition	
9.	The rapid		– in	dicates changing	directions (CO5, K4)
	(a)	Power	(b)	Agility	
	(c)	Flexibility	(d)	Balance	
10.	Calis	sthenic test are mo	st cor	mmonly used to ass	ess muscle (CO5, K4)
	(a)	Strength	(b)	Power	
	(c)	Flexibility	(d)	Endurance	
			3		R1096

Part B

 $(5 \times 5 = 25)$

Answer all questions not more than 500 words each.

11. (a) Summaries the introduction of fitness and write its benefits. (CO1, K3)

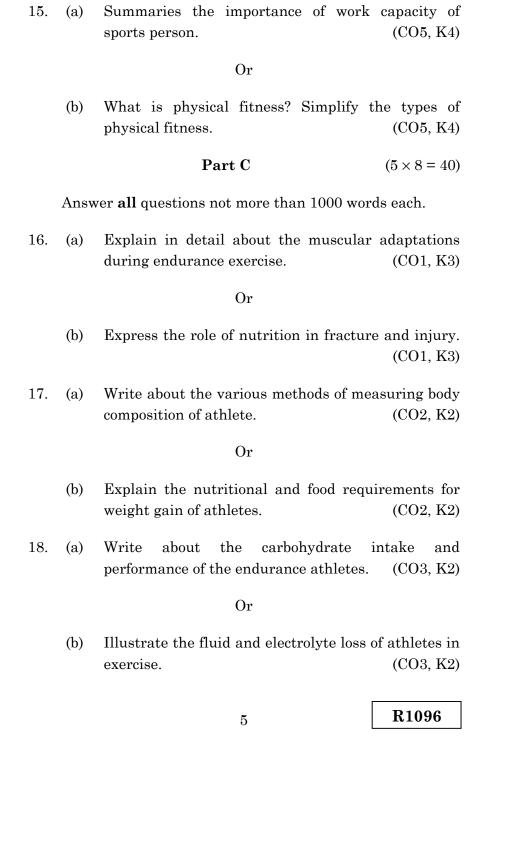
Or

- (b) Write about the difference between muscular and hormonal adaptation in endurance exercise. (CO1, K3)
- 12. (a) How the body composition can help athletes? Explain. (CO2, K2)

Or

- (b) Explain in detail about the safe sports performance in athlete. (CO2, K2)
- 13. (a) Show the metabolism of fats and performance of sports person. (CO3, K2)

Or


- (b) Express the importance of vitamins for athletes. (CO3, K2)
- 14. (a) Assess the importance of nutrition in power athlete. (CO4, K2)

Or

(b) Briefly explain the fluid requirements of young athletes. (CO4, K2)

4

R1096

19. (a) Explain the pre-event meals and its importance for sports person. (CO4, K2)

Or

(b) Evaluate the electrolyte balance for athletes.

(CO4, K2)

20. (a) Examine the different types of ergogenic aids in sports nutrition. (CO5, K4)

Or

(b) Write in detail about the fitness testing for sport and exercise. (CO5, K4)

(d)

Sub. Code 558503

M.Sc. DEGREE EXAMINATION, APRIL - 2024

Second Semester

Nutrition and Dietetics

Elective — FOOD MICROBIOLOGY AND SANITATION

(CBCS - 2023 onwards)

Time: 3 Hours Maximum: 75 Marks Part A $(10 \times 1 = 10)$ Answer all the following objective type questions by choosing the correct option. — is a broad term that encompasses the study 1. of all different types of microorganisms. (CO1, K2) Parasitology Bacteriology (a) (b) (c) Microbiology Protozoology (d) Microscopic fungi include -(CO1, K2) 2. Bacteria and Viruses (a) (b) Molds and yeasts Archaea and bacteria (c) None of these

3.	Wha grow	t is/are the vth?	intrinsic f	actors inv	olved ir	microbial (CO2, K1)
	(a)	Redox poter	ntial			
	(b)	Oxidation-I	Reduction P	otential		
	(c)	pH				
	(d)	All of these				
4.	bact	is eria which pi	the memberoduces D-la			
	(a)	Leuconosto	c			
	(b)	Pseudomon	as			
	(c)	Corynebact	erium			
	(d)	Listeria				
5.	Brea	ad can be mos	stly contami	inated by -		(CO3, K2)
	(a)	Bacteria	(b)	Virus		
	(c)	Molds	(d)	Algae		
6.		ch of the entation?	following	foods is	NOT	made by (CO3, K2)
	(a)	Beer	(b)	Bread		
	(c)	Cheese	(d)	Orange ju	uice	
			2			R1097

	conditio	ns.		(CO4, K1)
(a)	Dry			
(b)	Aerobic			
(c)	Anaerobic			
(d)	Both aerobic ar	nd anae	robic	
	ophiles are micr	_	_	
tem	peratures betwee	en ——		(CO4, K1)
(a)	$15^{\circ}\mathrm{C}$ and $45^{\circ}\mathrm{C}$	(b)	20°C and 45	$^{\circ}\mathrm{C}$
(c)	30°C and 45°C	(d)	40°C and 45	$^{\circ}\mathrm{C}$
Uni	versal Product C	ode (UP	PC) is known a	s ———
				(CO5, K1)
(a)	Nutrition label	ing		
(b)	Coding of food	product	\mathbf{s}	
(c)	Nutrition clain	ıs		
(d)	Bar code			
	——— licensir	ig cove	rs everv food	item, whether
	cultural or non-a			(CO5, K1)
(a)	AGMARK	(b)	FSSAI	
(c)	BIS	(d)	MMPO	
		3		R1097

Part B

 $(5 \times 5 = 25)$

Answer all the questions not more than 500 words each.

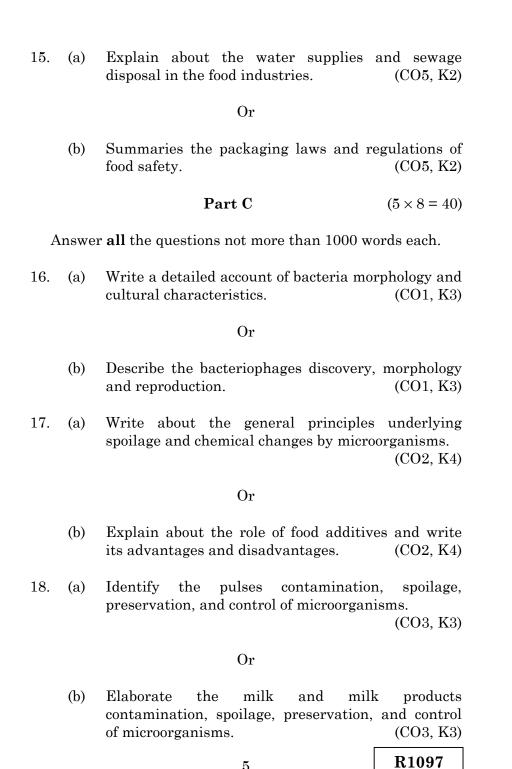
11. (a) Briefly explain about the history and development of microbiology. (CO1, K3)

Or

- (b) Write in detailed account on classification of Yeast. (CO1, K3)
- 12. (a) Describe the general principles of food preservation. (CO2, K4)

Or

- (b) Explain the preservation and control of microorganisms in vegetables spoilage. (CO2, K4)
- 13. (a) Describe the contamination and spoilage of microbes in cereals and cereal products. (CO3, K3)


Or

- (b) Elucidate the preservation and control of microorganisms in nuts and oil seeds. (CO3, K3)
- 14. (a) What are the foodborne diseases caused by fish? Explain. (CO4, K5)

Or

(b) Categories the grouping of canned foods on the basis of acidity. (CO4, K5)

R1097

19. (a) Explain the spoilage of canned foods, causes of spoilage, appearance of the unopened container. (CO4, K5)

Or

- (b) Give an elaborate account of the following food borne diseases-food borne illness and food borne poisoning. (CO4, K5)
- 20. (a) Write a note on the interactions between packaging and food toxicity hazards. (CO5, K2)

Or

(b) Give an account of the food laws and standards: BIS and AGMARK. (CO5, K2)